NAME \qquad DATE \qquad PERIOD

Parabolas

1. PROJECTILE A projectile follows the graph of the parabola ${ }^{y=-\frac{3}{2} x^{2}+6 x}$. Sketch the path of the projectile by graphing the parabola.

2. COMMUNICATION David has just made a large parabolic dish whose cross section is based on the graph of the parabola $y=0.25 x^{2}$. Each unit represents one foot and the diameter of his dish is 4 feet. He wants to make a listening device by placing a microphone at the focus of the parabola. Where should the microphone be placed?
3. BRIDGES A bridge is in the shape of a parabola that opens downward. The equation of the parabola to model the arch of the bridge is given by $y=-\frac{x^{2}}{24}+\frac{5}{6} x+\frac{11}{6}$, where each unit is equivalent to 1 yard. The x-axis is the ground level. What is the maximum height of the bridge above the ground?
4. TELESCOPES An astronomer is working with a large reflecting telescope. The reflecting mirror in the telescope has the parabolic cross section shown in the graph whose equation is given by $y=\frac{1}{8}(x-4)^{2}+2$. Each unit represents 1 meter. The astronomer is standing at the origin. How far from the focus of the parabola is the point on the mirror directly over the astronomer's head?

5. BRIDGES Part of the Sydney Harbor Bridge in Sydney, Australia, can be modeled by a parabolic arch. If each unit corresponds to 10 meters, the arch would pass through the points at $(-25,5),(0,10)$, and $(25,5)$.
a. Write the equation of the parabola to model the arch.
b. Identify the coordinates of the focus of this parabola.
