\qquad DATE \qquad PERIOD

Parabolas

Write each equation in standard form. Identify the vertex, axis of symmetry, and direction of opening of the parabola.

1. $y=2 x^{2}-12 x+19$
2. $y=\frac{1}{2} x^{2}+3 x+\frac{1}{2}$
3. $y=-3 x^{2}-12 x-7$

Graph each equation.
4. $y=(x-4)^{2}+3$

5.
$x=-\frac{1}{3} y^{2}+1$

6. $x=3(y+1)^{2}-3$

				${ }^{1}$			T
			-				$\stackrel{\text { x }}{ }$
				,			

Write an equation for each parabola described below. Then graph the equation.
7. vertex $(0,-4)$,
focus $\left(0,-3 \frac{7}{8}\right)$

8. vertex (-2, 1),
directrix $x=-3$

9. vertex (1, 3),
latus rectum: 2 units, $a<0$

				ay			

10. TELEVISION Write the equation in the form $y=a x^{2}$ for a satellite dish. Assume that the bottom of the upward-facing dish passes through $(0,0)$ and that the distance from the bottom to the focus point is 8 inches.
