$\qquad$
$\qquad$
$\qquad$

## Practice

## Geometric Vectors

Use a ruler and a protractor to determine the magnitude (in centimeters) and direction of each vector.
1.


3. $\stackrel{\leftrightarrows}{\square}$

Find the magnitude and direction of each resultant.
4. $\overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{y}}$
5. $\overrightarrow{\mathbf{x}}-\overrightarrow{\mathbf{z}}$
6. $2 \stackrel{\rightharpoonup}{\mathbf{x}}+\overrightarrow{\mathbf{y}}$
7. $\overrightarrow{\mathbf{y}}+3 \overrightarrow{\mathbf{z}}$

Find the magnitude of the horizontal and vertical components of each vector shown in Exercises 1-3.
8. $\stackrel{\rightharpoonup}{\mathbf{x}}$
9. $\overrightarrow{\mathbf{y}}$
10. $\overrightarrow{\mathbf{z}}$
11. Aviation An airplane is flying at a velocity of 500 miles per hour due north when it encounters a wind blowing out of the west at 50 miles per hour. What is the magnitude of the airplane's resultant velocity?
$\qquad$
$\qquad$

## Practice

## Algebraic Vectors

Write the ordered pair that represents $\overline{A B}$. Then find the magnitude of $\overline{A B}$.

1. $A(2,4), B(-1,3)$
2. $A(4,-2), B(5,-5)$
3. $A(-3,-6), B(8,-1)$

Find an ordered pair to represent $\vec{u}$ in each equation if $\vec{v}=\langle 2,-1\rangle$ and $\vec{w}=\langle-3,5\rangle$.
4. $\overrightarrow{\mathbf{u}}=3 \overrightarrow{\mathbf{v}}$
5. $\stackrel{\rightharpoonup}{\mathbf{u}}=\stackrel{\rightharpoonup}{\mathbf{w}}-2 \stackrel{\rightharpoonup}{\mathbf{v}}$
6. $\stackrel{\rightharpoonup}{\mathbf{u}}=4 \stackrel{\rightharpoonup}{\mathbf{v}}+3 \stackrel{\rightharpoonup}{\mathbf{w}}$
7. $\stackrel{\rightharpoonup}{\mathbf{u}}=5 \stackrel{\rightharpoonup}{\mathbf{w}}-3 \stackrel{\rightharpoonup}{\mathbf{v}}$

Find the magnitude of each vector, and write each vector as the sum of unit vectors.
8. $\langle 2,6\rangle$
9. $\langle 4,-5\rangle$
10. Gardening Nancy and Harry are lifting a stone statue and moving it to a new location in their garden. Nancy is pushing the statue with a force of 120 newtons ( N ) at a $60^{\circ}$ angle with the horizontal while Harry is pulling the statue with a force of 180 newtons at a $40^{\circ}$ angle with the horizontal. What is the magnitude of the combined force they exert on the statue?

