

Find the magnitude and direction of each resultant. 4. $\mathbf{\bar{x}} + \mathbf{\bar{y}}$ 5. $\mathbf{\bar{x}} - \mathbf{\bar{z}}$

6.
$$2\mathbf{\hat{x}} + \mathbf{\hat{y}}$$
 7. $\mathbf{\hat{y}} + 3\mathbf{\hat{z}}$

Find the magnitude of the horizontal and vertical components of each vector shown in Exercises 1-3.

8. \vec{x} 9. \vec{y} 10. \vec{z}

11. *Aviation* An airplane is flying at a velocity of 500 miles per hour due north when it encounters a wind blowing out of the west at 50 miles per hour. What is the magnitude of the airplane's resultant velocity?

NAME

Practice

Algebraic Vectors

Write the ordered pair that represents AB. Then find the magnitude of AB.

1. A(2, 4), B(-1, 3) **2.** A(4, -2), B(5, -5) **3.** A(-3, -6), B(8, -1)

Find an ordered pair to represent \vec{u} in each equation if $\vec{v} = \langle 2, -1 \rangle$ and $\overline{w} = \langle -3, 5 \rangle$. 5. $\vec{\mathbf{u}} = \vec{\mathbf{w}} - 2\vec{\mathbf{v}}$ 4. $\mathbf{\hat{u}} = 3\mathbf{\hat{v}}$

6.
$$\vec{\mathbf{u}} = 4\vec{\mathbf{v}} + 3\vec{\mathbf{w}}$$
 7. $\vec{\mathbf{u}} = 5\vec{\mathbf{w}} - 3\vec{\mathbf{v}}$

Find the magnitude of each vector, and write each vector as the sum of unit vectors.

9. $\langle 4, -5 \rangle$ **8.** (2, 6)

10. Gardening Nancy and Harry are lifting a stone statue and moving it to a new location in their garden. Nancy is pushing the statue with a force of 120 newtons (N) at a 60° angle with the horizontal while Harry is pulling the statue with a force of 180 newtons at a 40° angle with the horizontal. What is the magnitude of the combined force they exert on the statue?