\qquad
\qquad

Study Guide

Linear Programming

The following example outlines the procedure used to solve linear programming problems.

Example The B \& W Leather Company wants to add handmade belts and wallets to its product line. Each belt nets the company $\$ 18$ in profit, and each wallet nets $\$ 12$. Both belts and wallets require cutting and sewing. Belts require 2 hours of cutting time and 6 hours of sewing time. Wallets require 3 hours of cutting time and 3 hours of sewing time. If the cutting machine is available 12 hours a week and the sewing machine is available 18 hours per week, what mix of belts and wallets will produce the most profit within the constraints?

Define variables.

Write inequalities.

Let $b=$ the number of belts.
Let $w=$ the number of wallets.

$$
\begin{aligned}
& b \geq 0 \\
& w \geq 0 \\
& 2 b+3 w \leq 12 \text { cutting } \\
& 6 b+3 w \leq 18 \text { sewing }
\end{aligned}
$$

Graph the system.

Write an equation.

Substitute values.

$$
B(0,4)=18(0)+12(4)=48
$$

$$
B(1.5,3)=18(1.5)+12(3)=63
$$

Answer the problem.

Since the profit on belts is $\$ 18$ and the profit on wallets is $\$ 12$, the profit function is $B(b, w)=18 b+12 w$.

$$
B(0,0)=18(0)+12(0)=0
$$

$$
B(3,0)=18(3)+12(0)=54
$$

The B \& W Company will maximize profit if it makes and sells 1.5 belts for every 3 wallets.

When constraints of a linear programming problem cannot be satisfied simultaneously, then infeasibility is said to occur.
The solution of a linear programming problem is unbounded if the region defined by the constraints is infinitely large.
\qquad
\qquad

Practice

Linear Programming

Graph each system of inequalities. In a problem asking you to find the maximum value of $f(x, y)$, state whether the situation is infeasible, has alternate optimal solutions, or is unbounded. In each system, assume that $x \geq 0$ and $y \geq 0$ unless stated otherwise.

1. $-2 y \geq 2 x-36$
$x+y \geq 30$
$f(x, y)=3 x+3 y$

2. $2 x+2 y \geq 10$
$2 x+y \geq 8$
$f(x, y)=x+y$

Solve each problem, if possible. If not possible, state whether the problem is infeasible, has alternate optimal solutions, or is unbounded.
3. Nutrition A diet is to include at least 140 milligrams of Vitamin A and at least 145 milligrams of Vitamin B. These requirements can be obtained from two types of food. Type X contains 10 milligrams of Vitamin A and 20 milligrams of Vitamin B per pound. Type Y contains 30 milligrams of Vitamin A and 15 milligrams of Vitamin B per pound. If
 type X food costs $\$ 12$ per pound and type Y food costs $\$ 8$ per pound how many pounds of each type of food should be purchased to satisfy the requirements at the minimum cost?
4. Manufacturing The Cruiser Bicycle Company makes two styles of bicycles: the Traveler, which sells for $\$ 200$, and the Tourester, which sells for $\$ 600$. Each bicycle has the same frame and tires, but the assembly and painting time required for the Traveler is only 1 hour, while it is 3 hours for the Tourister. There are 300 frames and 360 hours of labor available for production. How many bicycles of each model
 should be produced to maximize revenue?

