Arithmetic sequences and series 11.2

nth term of an arithmetic sequence

$$a_n = a_1 + (n-1)d$$
 or $a_n = a_1 + d(n-1)$

Where a₁ is the first term

a_n is the last term

d is the common difference

n is the order of the last term

Find the indicated term of each arithmatic sequence

$$a_n = a_1 + d(n-1)$$
 $a_{16} = -18 + 12 (16 - 1) = 162$
 $a_{16} = 162$

2)
$$a_1 = 9$$
, $n = 24$, $d = -6$ $a_{24} = ?????$

Answer:

$$a_{24} = -129$$

Another idea

3) **a**₂₄ for 8.25 , 8.5 , 8.75 ,

Ans:

$$a_1 = 8.25$$
, $d = 8.5 - 8.25 = 0.25$, $n = 24$ $a_{24} =$

$$a_n = a_1 + d(n-1)$$

$$a_{24} = 8.25 + 0.25(24-1)$$

$$a_{24} = 14$$

Your turn

Answer: $a_{15} = -103$

Write an equation for the nth term of each arithmetic sequence

4) 24,35,46 ,

 $a_n = 24 + 11n - 11$

$$a_1 = 24$$

$$a_n = a_1 + d(n-1)$$

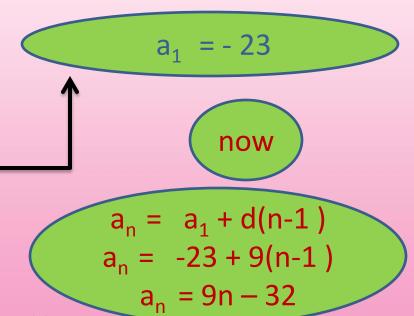
$$a_n = 24 + 11(n-1)$$

$$a_n = 24 + 11(n-1)$$

5) 31, 17, 3,

Answer:

$$a_n = 45 - 14 n$$


Another Idea

6)
$$a_6 = 22$$
 , $d = 9$

$$a_n = a_6 = 22$$

 $n = 6$

We have to find a₁

$$a_n = a_1 + d(n-1)$$

22 = a_1 + 9 (6-1)

Done by Shirin Nabil

7)
$$a_8 = -8$$
 , $d = -2$

Answer:

$$a_n = -2n + 8$$

Find the arithmetic means in each sequence

8)24,?,?,?,?,-1

But what we have?

We have $a_1 = 24$

Also we have $a_6 = -1$

S000000 ... n = 6

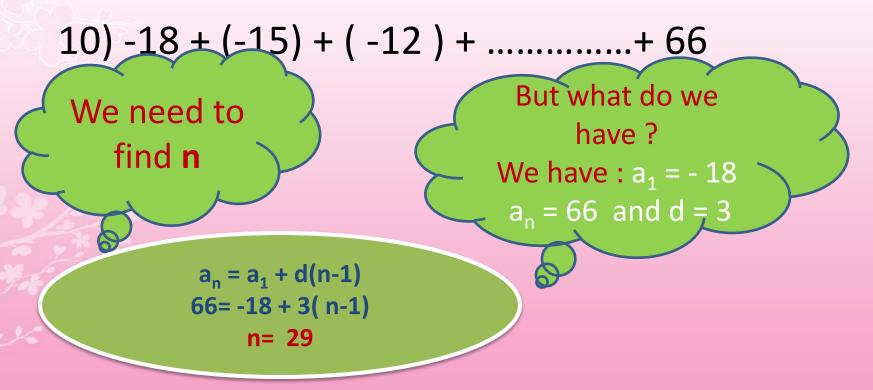
We need to find d

Then:

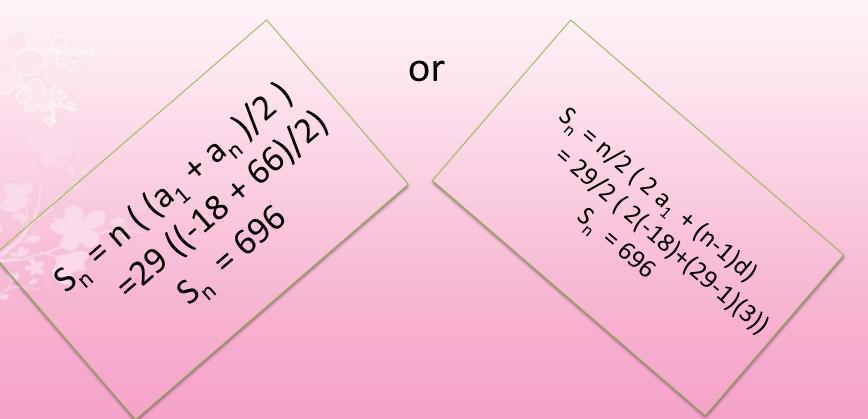
$$a_n = a_1 + d(n-1)$$
 $a_6 = a_1 + d(6-1)$
 $-1 = 24 + d(5)$
 $d = -5$
Done by Shirin Nabil

The arithmetic means are: 19,14,9,4

9) -12, ?, ?, ?, ?, -66


Answer:

-21,-30,-39,-48,-57


Partial Sum Of An Arithmetic Series

Formula	Given	The sum S_n of the first n terms is:
General	a_1 and a_n	$S_n = n \left(\frac{a_1 + a_n}{2} \right)$
Alternate	a_1 and d	$S_n = \frac{n}{2} \left[2a_1 + (n-1)d \right]$

Find the sum of each arithmetic series

Now we can get the sum of the given series (29 terms)

Your turn !!!!!!!!

Another Idea !!!!!!!

12) Find the sum of the first 100 even natural

Find the sum of each arithmetic series

$$\sum_{k=4}^{13} (4k+1)$$

$$K=4 \dots 4(4)+1=17$$

$$K=5 \dots 4(5)+1=21$$

$$\dots$$

$$K=13 \dots 4(13)+1=53 \text{ and so on}$$

$$\sum_{k=4}^{13} (4k+1) = 17+21+\dots +53$$
but we can use our calculators to find it .

$$\sum_{k=4}^{13} (4k+1) = 350$$

Thank you