Arithmetic sequences and series

 11.2nth term of an arithmetic sequence

$$
\begin{aligned}
& a_{n}=a_{1}+(n-1) d \quad \text { or } \\
& a_{n}=a_{1}+d(n-1)
\end{aligned}
$$

Where a_{1} is the first term
a_{n} is the last term
d is the common difference
n is the order of the last term

Find the indicated term of each arithmatic sequence

1) $a_{1}=-18, d=12, n=16 \ldots \ldots \ldots . . a_{16}=$?????

Ans:

$$
\begin{aligned}
& a_{n}=a_{1}+d(n-1) \\
& a_{16}=-18+12(16-1)=162 \\
& a_{16}=162
\end{aligned}
$$

Your turn

2) $a_{1}=9, n=24, d=-6 \ldots \ldots \ldots a_{24}=? ? ? ? ?$

Answer:
 $a_{24}=-129$

Another idea

3) a_{24} for $8.25,8.5,8.75, \ldots$.

Ans :

$$
\begin{gathered}
a_{1}=8.25, d=8.5-8.25=0.25, n=24 \ldots \ldots . . a_{24}=\ldots ~ \\
a_{n}=a_{1}+d(n-1)
\end{gathered}
$$

$$
a_{24}=8.25+0.25(24-1)
$$

$$
a_{24}=14
$$

Your turn

a_{15} for $-5,-12,-19, \ldots$.

Answer: $a_{15}=-103$

Write an equation for the nth term of each arithmetic sequence

4) $24,35,46$

$$
a_{n}=a_{1}+d(n-1)
$$

$$
a_{n}=24+11(n-1)
$$

$$
a_{n}=24+11 n-11
$$

Your turn

5) $31,17,3$,

Answer :

$$
a_{n}=45-14 n
$$

Another Idea

6) $a_{6}=22, \quad d=9$

$a_{n}=$| $a_{6}=22$ |
| :---: |
| $n=6$ |

We have to find a_{1}

$$
\begin{aligned}
& a_{n}=a_{1}+d(n-1) \\
& 22=a_{1}+9(6-1)
\end{aligned}
$$

$$
\begin{gathered}
a_{n}=a_{1}+d(n-1) \\
a_{n}=-23+9(n-1) \\
a_{n}=9 n-32
\end{gathered}
$$

Your turn

$$
\text { 7) } a_{8}=-8, \quad d=-2
$$

Answer:

$$
a_{n}=-2 n+8
$$

Find the arithmetic means in each sequence

8) 24 ,? ? ?,?,?, -1
But what we have? We have $\mathrm{a}_{1}=24$
Also we have $a_{6}=-1$ Soooooo ...n = 6

We need to find d

The arithmetic means are :
$19,14,9,4$

$$
\begin{gathered}
a_{n}=a_{1}+d(n-1) \\
a_{6}=a_{1}+d(6-1) \\
-1=24+d(5) \\
d=-5
\end{gathered}
$$

Your turn

9)-12, , ? , ?, ?, ?, ?, ?

Answer:

$$
-21,-30,-39,-48,-57
$$

Partial Sum Of An Arithmetic Series

Fommia	Given	The simm S_{n} of the first n tems is
General	$0_{\text {a }}$ and 0_{n}	$S_{n}=\left(\frac{a_{1}+a_{n}}{2}\right)$
Altemte	0, and ${ }^{\text {d }}$	$S_{n}=\frac{n}{2}\left[20_{1}+(n-1) d\right.$

Find the sum of each arithmetic series

Now we can get the sum of the given series (29 terms)

or

$$
\begin{aligned}
& s
\end{aligned}
$$

Your turn !!!!!!!!!

11) $-24+(-18)+(-12)+\ldots \ldots \ldots \ldots+72$

Answer: $\mathrm{Sn}=408$

Another Idea !!!!!!!!

12) Find the sum of the first 100 even natural

Find the sum of each arithmetic series

$\sum_{\substack{k=4 \\ K=4}}^{13}(4 k+\ldots \ldots . .4(4)+1=17$
$K=5 \ldots \ldots \ldots4(5)+1=21$
$K=134(13)+1=53$ and so on
$\sum^{13}(4 k+1)=17+21+$
.............. +53
but we can use our calculators to find it .

$$
\sum_{k=4}^{13}(4 k+1)=350
$$

Thank you

